Boolean Matrix Factorization and Noisy Completion via Message Passing

نویسندگان

  • Siamak Ravanbakhsh
  • Barnabás Póczos
  • Russell Greiner
چکیده

Boolean factor analysis is the task of decomposing a binary matrix to the Boolean product of two binary factors. This unsupervised data-analysis approach is desirable due to its interpretability, but hard to perform due its NP-hardness. A closely related problem is low-rank Boolean matrix completion from noisy observations. We treat these problems as maximum a posteriori inference problems, and present message passing solutions that scale linearly with the number of observations and factors. Our empirical study demonstrates that message passing is able to recover low-rank Boolean matrices, in the boundaries of theoretically possible recovery and outperform existing techniques in real-world applications, such collaborative filtering with large-scale Boolean data. A body of problems in machine learning, communication theory and combinatorial optimization involve the product form Z = X Y where operation corresponds to a type of matrix multiplication and Z = {Zm,n} , X = {Xm,k} , Y = {Yk,n} . Here, often one or two components (out of three) are (partially) known and the task is to recover the unknown component(s). A subset of these problems, which are most closely related to Boolean matrix factorization and matrix completion, can be expressed over the Boolean domain – i.e., Zm,n, Xm,k, Yk,n ∈ {false, true} ∼= {0, 1}. The two most common Boolean matrix products used in such applications are Z = X • Y ⇒ Zm,n = K ∨

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear Generalized Approximate Message Passing - Part I: Derivation

In this paper, we extend the generalized approximate message passing (G-AMP) approach, originally proposed for high-dimensional generalized-linear regression in the context of compressive sensing, to the generalized-bilinear case, which enables its application to matrix completion, robust PCA, dictionary learning, and related matrix-factorization problems. Here, in Part I of a two-part paper, w...

متن کامل

Parallel sparse LU factorization on different message passing platforms

Several message passing-based parallel solvers have been developed for general (nonsymmetric) sparse LU factorization with partial pivoting. Existing solvers were mostly deployed and evaluated on parallel computing platforms with high message passing performance (e.g., 1–10 μs in message latency and 100–1000 Mbytes/sec in message throughput) while little attention has been paid on slower platfo...

متن کامل

Low-rank matrix reconstruction and clustering via approximate message passing

We study the problem of reconstructing low-rank matrices from their noisy observations. We formulate the problem in the Bayesian framework, which allows us to exploit structural properties of matrices in addition to low-rankedness, such as sparsity. We propose an efficient approximate message passing algorithm, derived from the belief propagation algorithm, to perform the Bayesian inference for...

متن کامل

TARM: A Turbo-type Algorithm for Affine Rank Minimization

The affine rank minimization (ARM) problem arises in many real-world applications. The goal is to recover a low-rank matrix from a small amount of noisy affine measurements. The original problem is NP-hard, and so directly solving the problem is computationally prohibitive. Approximate low-complexity solutions for ARM have recently attracted much research interest. In this paper, we design an i...

متن کامل

Bilinear Generalized Approximate Message Passing

We extend the generalized approximate message passing (G-AMP) approach, originally proposed for highdimensional generalized-linear regression in the context of compressive sensing, to the generalized-bilinear case, which enables its application to matrix completion, robust PCA, dictionary learning, and related matrix-factorization problems. In the first part of the paper, we derive our Bilinear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016